بررسی حافظه بلند مدت و مقایسه سطح کارآمدی مدل های arima، arfima و مدل های خانواده arfima-garch برای پیش بینی شاخص قیمت سهام تهران (tepix)

thesis
abstract

شناخت سری های زمانی از اهم مباحث در تحلیل سری های زمانی در اقتصاد سنجی می باشد و بالطبع این شناخت در درک رفتار بازار به پژوهشگران و تحلیل گران می تواند نقش مهمی را ایفا کند. مطالعات اخیری که بر روی سری های زمانی انجام گرفته است، بیانگر این موضوع می باشد که، تست حافظه بلند مدت نسبت به سایر تست ها، از پر کاربردترین ها برای تحلیل سری های زمانی بوده است و این که احتمال کارامدی مدل هایی که با حافظه بلند مدت مدل سازی می شوند از مدل هایی که چنین ویژگی را در نظر نمی گیرند، بالاتر خواهد بود. اما در مورد پیش بینی این احتمال چندان قوی نخواهد بود. در این پژوهش با توجه به موضوع مورد تحقیق می توانیم اهداف را این گونه توصیف کنیم، شناخت سری زمانی شاخص قیمت سهام تهران از لحاظ حافظه بلند مدت و اینکه کدام یک از مدل های خطی، غیر خطی و غیر خطی ترکیبی که هر کدام حافظه خاص خود را در مدل سازی در نظر می گیرند، پیش بینی بهتری ارائه می دهند. در این پژوهش از سری تک متغیره شاخص قیمت تهران (tepix) برای تحلیل استفاده نمودیم و در پایان بر اساس نتایج استنباط می کنیم که، بازار تهران دارای حافظه بلند می باشد، تفاوت عملکرد بهتر پیش بینی مدل حافظه بلند مدت arfima نسبت به مدل arima بسیار جزئی است و اینکه مدل ترکیبی arfima-figarch عملکرد قابل قبولی را در مورد پیش بینی از خود نشان می دهد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

مقایسه کارآمدی مدل های ARIMA و ARFIMA برای مدل سازی و پیش بینی شاخص قیمت تهران (TEPIX)

این مقاله به بررسی عملکرد پیش بینی مدل های ARIMA و ARFIMA با استفاده از داده‌های روزانه بازده شاخص کل سهام تهران در بازه زمانی 04/09/1380 تا 09/09/1390 می پردازد. در این راستا جهت تخمین پارامتر d و دیگر پارامترها، از روشNLS  در بسته نرم‌افزار Oxmetric/pcgive  استفاده شد و پس از مقایسه نتایج مدل­های تحقیق؛ مدل ARFIMA بر اساس معیار AIC مدلی برتر در مدل سازی TEPIX مشخص گردید. همچنین از میان براورد...

full text

مقایسه کارآمدی مدل های arima و arfima برای مدل سازی و پیش بینی شاخص قیمت تهران (tepix)

این مقاله به بررسی عملکرد پیش بینی مدل های arima و arfima با استفاده از داده های روزانه بازده شاخص کل سهام تهران در بازه زمانی 04/09/1380 تا 09/09/1390 می پردازد. در این راستا جهت تخمین پارامتر d و دیگر پارامترها، از روشnls  در بسته نرم افزار oxmetric/pcgive  استفاده شد و پس از مقایسه نتایج مدل­های تحقیق؛ مدل arfima بر اساس معیار aic مدلی برتر در مدل سازی tepix مشخص گردید. همچنین از میان براورد...

full text

پیش بینی قیمت بنزین فوب خلیج فارس با استفاده از مدل های arima و arfima

یکی از روش­های مناسب در پیش­بینی سری زمانی، تعمیم رفتار گذشته سری به آینده است. برای این منظور اولین قدم شناخت دقیق رفتار گذشته متغیر است. یکی از روش­های الگوسازی رفتار گذشته سری زمانی مدل خود توضیح جمعی میانگین متحرک (arima) است. در این پژوهش از مدل های arima و arfima برای پیش­بینی قیمت هفتگی بنزین استفاده شد. همچنین پیش­بینی مدل arima با پیش بینی مدل خود توضیح کسری جمعی میانگین متحرک (arfima)...

full text

بررسی تاثیر فرکانس داده‌ ها بر قدرت پیش بینی الگوهای با حافظه بلند مدت و کوتاه مدت: کاربرد در تلاطم بازار جهانی نفت

محققان زیادی از مدل های مختلف برای پیش‌بینی تلاطم در بازار کالا و سرمایه استفاده کرده‌اند. هر چند تعداد اندکی از این تحقیقات به نقش فرکانس داده‌ها در پیش‌بینی های خود توجه کرده‌اند. همچنین هیچکدام از این تحقیقات امکان وجود حافظه بلند مدت در پیش بینی تلاطم قیمت نفت را در نظر نگرفته‌اند. ما به منظور پرکردن این شکاف در پژوهش ها دسته‌ای از الگوهای خانواده GARCH و ARFIMA (الگوهایی با حافظه بلند مدت ...

full text

پیش‌بینی بازدهی شاخص صنعت پتروشیمی در بورس اوراق بهادار تهران با استفاده از مدل‌های ARIMA و ARFIMA

پیش بینی متغیرهای اقتصادی از اهمیت  ویژه ای در مباحث اقتصادی برخوردار است و مدل های مختلفی جهت پیش بینی مقادیر آتی متغیرها به وجود آمده اند. یکی از مهمترین کارکردهای مدل های اقتصادی، پیش بینی مقادیر آتی متغیرهای اقتصادی می باشد. در حقیقت مدل های اقتصادی را می توان از طریق بررسی میزان دقت پیش بینی مورد آزمون قرار داد. بدین صورت که اگر یک مدل اقتصادی در تبیین روابط موجود بین متغیرها موفق باشد، با...

full text

پیش‎بینی شاخص کل بورس اوراق بهادار تهران با مدل ARFIMA

در این مقاله با استفاده از داده‎های روزانة شاخص کل بورس اوراق بهادار تهران در دورة زمانی 6/1/1382 تا 14/4/1386، به بررسی ویژگی حافظة بلند این شاخص پرداخته و مدل ARFIMA را بر آن برازش می‎دهیم. هم‎چنین عملکرد پیش‎بینی مدل ARFIMA را با مدل ARIMA مقایسه می‎کنیم. نتایج نشان می‎دهند که اولاٌ این سری زمانی از نوع حافظة بلند است، بنابراین می‎توان با تفاضل‎گیری کسری آن را مانا کرد. پارامتر تفاضل‎گیری ب...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023